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I. INTRODUCTION

Recently, a benchmark for the problem of finding the
densest closed packing of a multidisperse system of hard
disks was defined as follows �1�: consider a system of N hard
disks with successive integer radii ri= i �i=1,2 , . . . ,N�.
These disks are to be packed in a circular environment in a
way that the radius R of the circumcircle is minimized and
that the various disks must not overlap. In the benchmark
contest, only small system sizes 5�N�50 were considered.
The best solution we found for 50 disks is shown in Fig. 1. If
denoting the coordinates of the midpoint of disk i as xi and yi
and assuming the midpoint of the circumcircle to be located
at the origin, the Hamiltonian of the problem can be rewrit-
ten as

R = maxi��xi
2 + yi

2 + ri� . �1�

The constraint that no overlap may occur can be written as
the set of inequalities,

��xi − xj�2 + �yi − yj�2 � ri + rj ∀ �i, j� . �2�

With an approach based on simulated annealing �2� and its
variant �3� threshold accepting �4�, we were able to produce
the best known solutions for all system sizes considered in
the benchmark contest �5�.

While this benchmark is easy to formulate and seems
rather specialized, it is nonetheless an exemplary problem of
a multidisperse system of hard particles, which are widely
used in physics: hard disks and hard spheres often serve as
simple two-dimensional and three-dimensional models for
granular matter, colloidal systems, fiber-reinforced compos-
ites, and molecular crystals �6–10�. Mostly, monodisperse
and bidisperse systems are considered, i.e., either all disks
and spheres exhibit the same radius value or one of two
different values. But multidisperse packing problems exhibit
additional fascinating properties when compared to monodis-
perse packing problems. The effect of multidispersity on the
microstructure can be dramatic �11�. When considering, e.g.,
particles which partially exhibit conducting properties, one
finds that they are often prevented from forming a connected

network as a result of the relative size and composition of the
surrounding nonconducting particles �12�. A further example
involves the dissolution of a crystal comprised of multidis-
perse disks, where the large disks restrict the solubility of the
crystal in the solvent �13�.

We focus on this benchmark problem, as it has
been proven to be non-deterministic polynomial time
�NP�-complete, such that no exact algorithm solving this
problem in polynomial time �there is no algorithm with ex-
ponent p and prefactor a for which the calculation time t
�aNp� exists, and as the benchmark contest provided world
record results, with which we can compare our results. We
use the general-purpose algorithm simulated annealing for
optimizing this problem as it searches for a deep minimum in
the energy landscape in an unbiased way. Besides the solu-
tion shown in Fig. 1 for N=50, we were able to find 9927
quasioptimum solutions with radius values R�222, which
we already used in �5� for determining the neighborhood
relations between the various disks. Analogously, we found
vast numbers of quasioptimum solutions for the smaller sys-
tem sizes considered in the contest. In this paper, we will
show that the subspace of the quasioptimum configurations
of this exemplary multidisperse packing problem exhibits the
property of ultrametricity and will present computational re-
sults for the system size N=50.
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FIG. 1. Best solution found for the multidisperse packing prob-
lem with 50 disks: the circumcircle has a radius R
=220.600 418 7. . .. The numbers within the larger circles denote
their radius values.
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II. DEFINITION OF ULTRAMETRICITY

Starting with Parisi’s investigation and solution of the
Sherrington-Kirkpatrick �SK� model for spin glasses �14�,
not only this problem �15� but also other problems, such as
the random-link traveling salesman problem �TSP� �16�,
have been investigated for whether their energy landscapes
exhibit the property of ultrametricity �17�, thus allowing for
a deeper insight in the structure of these problems. It was
conjectured that, generally, in frustrated optimization prob-
lems in which the imposed constraints cannot all be satisfied
simultaneously, the optimal configurations spread in an ultra-
metric way in the configuration space �18�, such that this
ultrametricity property can be expected also to turn up in
multidisperse packing problems. In order to determine ultra-
metric properties for the packing problem, we follow the
approach used by Kirkpatrick and Toulouse �16� for the trav-
eling salesman problem.

A standard metric is given by a function d, assigning each
pair �u� ,v�� of points a real number d�u� ,v�� denoting the dis-
tance between them. In order to be a metric, the function d
must obey to the constraints that

�1� d�u� ,v���0 for all pairs �u� ,v�� of points �semipositive
definiteness�,

�2� d�u� ,u��=0 for all points u� , and
�3� d�u� ,v���d�u� ,w� �+d�w� ,v�� �triangle inequality� for all

triples �u� ,v� ,w� � of points.
If even d�u� ,v��=d�v� ,u�� for all pairs �u� ,v�� of points, then

the metric is called symmetric. A standard example of a met-
ric is the Euclidean metric,

d�u� ,v�� =��
i=1

D

�ui − vi�2 �3�

in D dimensions. But there are also other important metrics
such as the Manhattan metric, which reads as

d�u� ,v�� = �
i=1

D

�ui − vi� , �4�

and the Chebychev metric, which reads as

d�u� ,v�� = max��ui − vi�	 . �5�

These three examples belong to the class of Lp-metrics,
which can in general be written as

d�u� ,v�� = 
�
i=1

D

�ui − vi�p�1/p

. �6�

In case of an ultrametric, the triangle inequality �3� is
replaced by the stricter ultrametricity condition,

d�u� ,v�� � max�d�u� ,w� �,d�w� ,v��	 , �7�

for all triples �u� ,v� ,w� � of points. When permuting u� , v� , and
w� , one finds that the condition of ultrametricity is only ful-
filled if the points u� , v� , and w� form the edges of a triangle
which is either equilateral or at least isosceles in the way that
the base of the triangle is shorter than its legs.

III. OVERLAPS BETWEEN CONFIGURATIONS

In the space of the configurations, points are simply
given by configurations. A configuration of our multidisperse
packing problem is given by the ordered set of coordi-
nates of the midpoints of the N disks, ��x1 ,y1� , �x2 ,y2� ,
�x3 ,y3� , . . . , �xN ,yN��. For defining a function d, a similarity
or dissimilarity measure between the configurations has to be
defined. For this purpose, we use the neighborhood relations
between various disks: we consider two disks i and j to be
neighbors of each other if their corresponding cells in a
Voronoi diagram �19,20� are adjacent to each other. Please
note that the boundaries in the Voronoi diagram are not
straight lines �as it would be the case if constructing Voronoi
diagrams of sets of points or sets of disks with identical
radii� but hyperbolic curves, as the radii ri of the various
disks differ. For very densely packed configurations, these
hyperbolic curves are only slightly bent. By connecting the
midpoints of disks in adjacent cells, we get a graph with
edges, which comprise the Delaunay triangulation. Let �� be
an edge matrix with

���i, j� = �
1 if the cells of disks i and j are

adjacent to each other in

configuration �

0 otherwise.

 �8�

Then the overall number e��� of edges in the configuration is
simply given by

e��� =
1

2�
i,j

���i, j� . �9�

The minimum number of edges we find in the considered
configurations is 113, the maximum is 127. The distribution
of the number of edges, which is shown in Fig. 2, exhibits a
sharp peak around its mean value �e�=118.72.

At this point, we may ask how much different solutions
we have generally in common. For answering this question,
we calculate the overlap between pairs of configurations. The
un-normalized overlap q�� between the configurations � and
� is given as

1

0.1
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10-4

110 115 120 125 130

p(
e)

e

FIG. 2. Probability distribution of the number e of edges denot-
ing the neighborhood relations between the various disks.
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q�� =
1

2�
i,j

���i, j����i, j� . �10�

One might want to normalize this overlap to

q̃�� =
q��

min�e���,e���	
, �11�

but please note that the minimum number of edges varies
slightly around its mean value �min�e��� ,e���	�=117.79.
Thus, we prefer to work with un-normalized overlaps, just as
in the work of Kirkpatrick and Toulouse on the random-link
traveling salesman problem in �18�. Throughout this paper,
we will only work with overlap values which are not normal-
ized and which we denote with the letter q. If we want to
refer in some additional explanations to their corresponding
normalized overlap values, we explicitly speak of normal-
ized overlap values and denote them with q̃. We keep in
mind that our corresponding normalized overlap values are
restricted to the interval �0; 1�, similar to the work of Kirk-
patrick and Toulouse �18�, thus, these are no algebraic num-
bers. Contrarily, when investigating configurations for spin-
glass models, one gets normalized overlaps in the range
�−1; 1�.

Investigating these overlap values, we first create a histo-
gram of the overlap values which occur between the 9923
�9922 /2=49 228 003 pairs �� ,�� of configurations with �
��. The probability with which the overlap values occur
between our quasioptimum configurations is shown in Fig. 3.
We find that there is no configuration, which is completely
different from any other configuration, as p�q=0�=0. The
largest overlap value is 125, which is rather close to the
maximum number of edges occurring in a configuration,
which was 127, as can be seen in Fig. 2. The mean value of
the overlaps is �q�=15.5754�5�10−4. The maximum of the
distribution lies at q=15, which 5 601 883 pairs of configu-
rations have as overlap value. The distribution of the overlap
values exhibits three peaks, one at 115�q�125, a smaller
one at 83�q�104, and the largest one at 1�q�41. Over-
lap values q=85, q=88, and in the ranges 42�q�82 and
105�q�114 do not occur. We checked those pairs of con-
figurations with large overlap values in which way they dif-
fer from each other and found that the optimization runs

generating these configurations ended basically up in the
same solution, only differing in the locations of some of the
smallest disks which are also called rattlers and which can be
placed rather randomly in one of the holes between the
jammed larger disks or close to the circumcircle. If using not
all configurations with R�222 but selecting only those 378
solutions with R�221.2, only the left peak of the distribu-
tion remains, but it becomes narrower: the maximum overlap
found is 24, the maximum of the peak is formed by 50 pairs
of configurations with an overlap of 13. The vanishing of the
middle and right subdistribution can be explained by the
much smaller statistics here: the 378 configurations consid-
ered here were generated by independent optimization runs,
leading to solutions which differ significantly from each
other. In this smaller set of configurations, there is no pair of
solutions anymore differing in the positions of a few rattlers
only. Now we return to our overall set of 9923 solutions.

The overlaps define a distance measure between pairs of
configurations. The relation between the normalized overlap
q̃�� and the distance d�� ,�� between the configurations � and
� is straightforward given as

d��,�� = 1 − q̃��. �12�

In terms of overlaps, we can rewrite the ultrametric condition
�7� to

q�� � min�q�	,q	�	 �13�

and use the fact that overlaps are symmetric, i.e., q��=q�� for
all pairs �� ,�� of configurations.

IV. PARTIAL OVERLAP DISTRIBUTIONS

In order to prove the occurrence of the ultrametric prop-
erty, we first determine the probability distribution
p�q�� ,q�	 ,q	�� and consider the partial distribution p�q��

=Q ,q�	 ,q	�� for a large fixed overlap value Q, for which
p�Q� is still sufficiently large to get a good statistics. If the
condition of ultrametricity is fulfilled, then the histogram of
p�Q ,q�	 ,q	�� should exhibit a peak around the diagonal for
all q�	=q	��Q. Figure 4 exemplarily shows the results for
Q=15, for which the distribution of the overlap values ex-
hibits its maximum, for Q=25, an overlap value which still
lies in the left peak in the histogram shown in Fig. 3 and for
which the probability is still sufficiently large, and for Q
=99 and Q=119, at which the middle and the right peaks of
the overlap histogram exhibit their maxima. We find indeed
that the distribution exhibits a strong peak around the diag-
onal. For these and all other Q values, the maximum of the
peak lies at q�	=q�	=15. The overall maximum of the dis-
tribution is achieved for equilateral triangles with side length
15, which is not surprising, as the distribution of overlap
values exhibits a strong peak at q=15, as shown in Fig. 3.
However, as the location of the peak stays the same also for
Q�15, the condition of ultrametricity is not well fulfilled
there, as then the still likely occurring isosceles triangles
have legs shorter than the base in terms of ultrametric dis-
tances. Furthermore, we note that the results differ for over-
lap values from different peaks in the overlap histogram: for
small overlap values, the peaks are not very sharp, such that

1
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10-5
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0 20 40 60 80 100 120

p(
q σ

τ)

qστ

FIG. 3. �Color online� Probability with which a specific value of
the overlap values q�� is found for a pair of configurations �� ,��
with ���.
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triangles which are only roughly isosceles are also very
likely. We see exemplarily for Q=15 and Q=25 that the
peaks are approximately isotropically formed around the
midpoint at q�	=q�	=15. On the other hand, we find peaks
which are long stretched around the diagonal but still cen-
tered around q�	=q�	=15 for Q values from the second peak,
as shown for Q=99. For Q values from the third peak, all
nondiagonal histogram entries vanish entirely as the graphic
for Q=119 shows exemplarily.

These three different regimes can be understood even bet-
ter if performing a triangle statistics over all triples of con-
figurations �� ,� ,	�, again with ����	��. For each
length q�� of the base of a triangle, we measure the fractions
fu�q��� of ultrametric triangles, f i�q��� of isosceles triangles,
and fe�q��� of equilateral triangles. We find three different
regimes for these fractions in Fig. 5, corresponding to the
three peaks in the overlap distribution in Fig. 3: of course, no
such fraction can be defined for overlap values which do not
occur between pairs of configurations. In the regime 1
�q���41, the fraction of ultrametric triangles sigmoidally
approaches the fraction of isosceles triangles. Ultrametric tri-
angles only occur for q���5. The fraction of equilateral tri-
angles is of course the smallest: equilateral triangles only

occur for 5�q���30. fe exhibits a slightly asymmetric peak
at q��=15. The fraction of ultrametric triangles first increases
with the fraction of equilateral triangles with increasing q��

and then approaches the fraction of isosceles triangles. fu is
equal to f i for q���31, i.e., all isosceles triangles are ultra-
metric. When neglecting small fluctuations, the fraction of
isosceles triangles increases monotonously with increasing
base length q��. In the range of the second peak, the fractions
of isosceles and ultrametric triangles again coincide. In the
range of the third peak of the overlap distribution, i.e., for
115�q���125, we find that all triangles are ultrametric and
isosceles. But please note that the statistics is worse for
larger q�� values: we have an overall maximum of �5.56
�1010 triangles with base length q��=15, but only overall
39 684 triangles for q��=99 and 525 813 triangles for q��

=119. The minimum number of triangles of which the frac-
tions fu, f i, and fe are determined is of course 9921, for the
case that a specific overlap value q�� only occurs for one pair
�� ,�� of configurations. Therefore, the average values of our
fractions are �fu�=4.56�10−2, �f i�=8.08�10−2, and �fe�
=7.53�10−3 and are thus dominated by the contributions at
small values of q��.

V. REMOVING THE INDEPENDENT BACKGROUND

However, simply counting the number of ultrametric tri-
angles is not sufficient to determine the ultrametric property
of a system. Instead, one has to remove the independent
background �17�. For this purpose, let us first normalize the
probability that a triangle with edge lengths q��=Q, q�	, and
q�	 occurs according to

p�Q,q�	,q�	� =
h�Q,q�	,q�	�

�
q1,q2

h�Q,q1,q2�
, �14�

such that
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FIG. 4. �Color online� Un-normalized probability distribution p�Q ,q�	 ,q�	� with Q=15 �top left�, Q=25 �top right�, Q=99 �bottom left�,
and Q=119 �bottom right�: the histogram value h�Q ,q�	 ,q�	� denotes how often a triangle with side lengths Q, q�	, and q�	 was found.
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�
q1,q2

p�Q,q1,q2� = 1 ∀ Q . �15�

Then we define the probability p�q��� that an edge with
length q�� occurs based on the histogram shown in Fig. 3. In
the next step, we remove the independent background by
subtracting the product p�q�	�p�q�	� from p�Q ,q�	 ,q�	� for
all values of Q. If the system exhibits the property of ultra-
metricity then we should see a positive peak stretched along
the diagonal. But as Fig. 6 shows, we find a transition to a
correct ultrametric behavior with increasing Q values: obvi-
ously, the peak of the histogram at h�Q ,Q ,Q� for Q=15 in
Fig. 4 was no sign for ultrametricity but only caused by the
dominating overlap value of 15. If removing the background,
only a very small positive entry remains, as shown in the top
left graphic of Fig. 6. But other structures become more sig-
nificant: for smaller overlap values, we find a small positive
peak centered around the diagonal, for larger overlap values,
a small negative peak. The picture changes when increasing
Q: already for Q=25, we see two positive peaks centered
around the diagonal and two negative peaks, left and right,
besides the diagonal. Increasing the value of Q even further,
the peak around the diagonal becomes long stretched and

narrower. Additionally, we always find two small negative
peaks located symmetrically around the diagonal.

There is also a second index for ultrametricity based on
restricted probabilities �17�: let

ĥ�q��,q�	,q�	� = �h�q��,q�	,q�	� if q�	 � q��

and q�	 � q��

0 otherwise.

 �16�

Then we define the restricted probabilities,

r�Q,q�	,q�	� =
ĥ�Q,q�	,q�	�

�
q1,q2

ĥ�Q,q1,q2�
, �17�

r�Q,q�	� =

�
q2

ĥ�Q,q�	,q2�

�
q1,q2

ĥ�Q,q1,q2�
, �18�
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FIG. 7. �Color online� Ultrametricity measure r�q��=Q ,q�	 ,q�	�−r�Q ,q�	�r�Q ,q�	� based on the restricted probabilities r �see text� for
Q=15 �top left�, Q=25 �top right�, Q=99 �bottom left�, and Q=119 �bottom right�.
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left�, and Q=119 �bottom right�.
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r�Q,q�	� =

�
q1

ĥ�Q,q1,q�	�

�
q1,q2

ĥ�Q,q1,q2�
. �19�

The results for this second measure are shown in Fig. 7.
Please note that of course r�Q ,q�	 ,q�	�=0 if q�	
Q or q�	


Q. The largest difference to the previous measure shown in
Fig. 6 is visible in the graphic for Q=15. The distribution for
the restricted probabilities exhibits a strong negative peak at
q�	=q�	=q��=15, whereas at this point, we find a slightly
positive value in Fig. 6. With increasing Q, the graphics for
this second measure shown in Fig. 7 gradually approach the
corresponding graphics shown in Fig. 6.

We can of course go even a step further and integrate over
all Q values, as described in �17�, and then get the graphics
for the two measures shown in Fig. 8.

Please note that looking at both measures is necessary:
p�q�	 ,q�	�− p�q�	�p�q�	� vanishes for a homogeneous distri-
bution of points which provides a convenient null limit. But
it vanishes also for a regular tree so that it does not test pure
ultrametricity. Instead, it is sensitive to a combination of ul-
trametricity and heterogeneity. On the other hand,
r�q�	 ,q�	�−r�q�	�r�q�	� is more directly related to ultra-
metricity. For an ultrametric set of points, all positive values
are concentrated on the diagonal. The drawback of this sec-
ond measure is that it also gives a positive signal in the case
of a homogeneous set of points. Thus, p�q�	 ,q�	�
− p�q�	�p�q�	� and r�q�	 ,q�	�−r�q�	�r�q�	� provide comple-
mentary information and are thus both necessary to detect
true ultrametricity. Summarizing, we find that the condition
of ultrametricity is more likely fulfilled for a randomly cho-
sen triangle, the longer the base of that triangle is.

VI. QUASIULTRAMETRICITY

In recent years, many scientists studying ultrametric prop-
erties of their systems have also started to consider the frac-
tions of almost ultrametric triangles, e.g., by binning the un-
derlying data to a very small set of representative values
�see, e.g., �21��. These quasiultrametric triangles violate
more or less the exact ultrametricity condition q��

�min�q�	 ,q�		 if considering the exact data values, but this
approach of investigating quasiultrametricity is nevertheless
interesting. We therefore have a look at the fraction
fqu��q��q��� of quasiultrametric triangles with the base length
q�� and fulfilling the quasiultrametric properties,

�q�	 − q�	� � �q ,

q�	 � q�� + �q .

q�	 � q�� + �q , �20�

for �q�0. The results for these quasiultrametric fractions of
triangles are shown in Fig. 9 for �q�3. Of course, the curve
for �q=0 reflects the correct ultrametricity condition and is
therefore identical with the corresponding curve in Fig. 5.
The larger the violation �q, the larger of course the fraction
of quasiultrametric triangles. But despite this increase in the
fraction with increasing �q, we find qualitatively the same
increase in the fraction with increasing base length q�� for
various values of �q.

VII. CONCLUSION AND OUTLOOK

In this paper, we considered a multidisperse system of N
hard disks with different integer radii ri �1�ri�N�, for
which the densest packing in a circular environment had to
be found. We solved this problem using simulated annealing,
thus achieving a huge number of locally minimum quasiop-
timum configurations which we used to explore the structure
of the energy landscape of these problems. We found that the
set of quasioptimum solutions exhibits ultrametric properties.

We will extend our investigations to systems of hard
spheres in three and even higher dimensions �22�. Then we
will move on to other particle shapes, such as ellipsoids and
spherocylinders. We expect to find the property of ultra-
metricity also for any other multidisperse packing problem
with particles of different sizes, shapes, and/or interactions.
Additionally, we will investigate further means to detect ul-
trametric properties of complex problems, e.g., by generating
hierarchical trees, as the property of ultrametricity is directly
linked to the possibility to create a hierarchical tree. A further
approach would be to create a permutation � of the configu-
rations, thus reordering them in the way that we could get a
matrix of normalized overlaps showing a block structure
such as

�q̃����,����� = ,�
1 q̃1

q̃1 1
q̃2

q̃2

1 q̃1

q̃1 1

q̃3

q̃3

1 q̃1

q̃1 1
q̃2

q̃2

1 q̃1

q̃1 1

�
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FIG. 8. �Color online� Ultrametricity measures p�q�	 ,q�	�− p�q�	�p�q�	� �left� and r�q�	 ,q�	�−r�q�	�r�q�	� �right� integrated over all q��

values.
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with normalized overlap values 1
 q̃1
 q̃2
 . . .. This picture
in formula �21� is given for the example of eight configura-
tions, which, if located on a hierarchical tree, would form the
leaves of a binary tree, such that we have ones in the diag-
onal, which denote the normalized overlap values of a con-
figuration with itself, a relatively large normalized overlap
value q̃1�1 between pairs of neighboring configurations, a
slightly smaller normalized overlap value q̃2 between pairs of
neighboring pairs, and so on. The structure of the matrix in
Eq. �21� is related to the block structure used in the Parisi
solution of the SK spin-glass model due to the iterated rep-
lica symmetry breaking. A way of obtaining such a permu-
tation would be �when numbering all configurations and con-
sidering � to be the number of the corresponding
configuration� to maximize the objective function

H��� = �
���

q̃����,����a
�����−�����, �22�

with the factor a being only slightly smaller than 1. First
tests show that good results for this maximization problem
can be achieved if applying simulated annealing �2� to this
problem in combination with local search moves, which
were developed for the TSP: the traveling salesman has the
task to find the shortest closed tour through a given set of
nodes, touching each node exactly once �23–25�. Analo-
gously to the TSP, an optimum sequence has to be found,
such that these problems are related to each other. Like for

the TSP, we find that including higher-order moves, which
cut not only two but three or four edges of the sequence and
then reunite the partial sequences using new edges �26�, im-
proves the results considerably. Furthermore, the factor a
should be gradually decreased during the optimization run,
thus first emphasizing the generation of larger blocks and
afterwards working out the local ordering inside the blocks.
Like in further sequencing and other optimization problems
�27–30�, such blocks might turn up identically even in dif-
ferent quasioptimum solutions. Thus, we intend to apply the
parallel searching for backbones algorithm �25,27,28� to this
problem, which first generates a large number of quasiopti-
mum solutions to this problem on the slave nodes, then lets
the master node identify blocks common to these solutions,
assumes these blocks to be optimally solved, and sends the
information about these blocks back to the slaves, which
perform new optimization runs holding these blocks con-
stant. Thus, the effective size of the problem and therefore its
complexity is significantly reduced, such that the slaves can
concentrate on uniting the blocks in the optimum way. This
approach is iterated until all slaves generate the same solu-
tion, which is hopefully the global optimum to this problem.
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